ompW is cooperatively upregulated by MarA and SoxS in response to menadione
نویسندگان
چکیده
OmpW is a minor porin whose biological function has not been clearly defined. Evidence obtained in our laboratory indicates that in Salmonella enterica serovar Typhimurium the expression of OmpW is activated by SoxS upon exposure to paraquat and it is required for resistance. SoxS belongs to the AraC family of transcriptional regulators, like MarA and Rob. Due to their high structural similarity, the genes under their control have been grouped in the mar/sox/rob regulon, which presents a DNA-binding consensus sequence denominated the marsox box. In this work, we evaluated the role of the transcription factors MarA, SoxS and Rob of S. enterica serovar Typhimurium in regulating ompW expression in response to menadione. We determined the transcript and protein levels of OmpW in different genetic backgrounds; in the wild-type and Δrob strains ompW was upregulated in response to menadione, while in the ΔmarA and ΔsoxS strains the induction was abolished. In a double marA soxS mutant, ompW transcript levels were lowered after exposure to menadione, and only complementation in trans with both genes restored the positive regulation. Using transcriptional fusions and electrophoretic mobility shift assays with mutant versions of the promoter region we demonstrated that two of the predicted sites were functional. Additionally, we demonstrated that MarA increases the affinity of SoxS for the ompW promoter region. In conclusion, our study shows that ompW is upregulated in response to menadione in a cooperative manner by MarA and SoxS through a direct interaction with the promoter region.
منابع مشابه
Regulation of the Two-Component Regulator CpxR on Aminoglycosides and β-lactams Resistance in Salmonella enterica serovar Typhimurium
The two-component signal transduction system CpxAR is especially widespread in Gram-negative bacteria. It has been reported that CpxAR contributes to the multidrug resistance (MDR) in Escherichia coli. CpxR is a response regulator in the two-component CpxAR system. The aim of this study was to explore the role of cpxR in the MDR of S. enterica serovar Typhimurium. The minimal inhibitory concent...
متن کاملMarA, SoxS and Rob of Escherichia coli - Global regulators of multidrug resistance, virulence and stress response.
Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Esc...
متن کاملPurification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters.
Expression of the marA or soxS genes is induced by exposure of Escherichia coli to salicylate or superoxides, respectively. This, in turn, enhances the expression of a common set of promoters (the mar/soxRS regulons), resulting in both multiple antibiotic and superoxide resistance. Since MarA protein is highly homologous to SoxS, and since a MalE-SoxS fusion protein has recently been shown to a...
متن کاملSoxS increases the expression of the zinc uptake system ZnuACB in an Escherichia coli murine pyelonephritis model.
Paralogous transcriptional regulators MarA, Rob, and SoxS act individually and together to control expression of more than 80 Escherichia coli genes. Deletion of marA, rob, and soxS from an E. coli clinical isolate prevents persistence beyond 2 days postinfection in a mouse model of pyelonephritis. We used microarray analysis to identify 242 genes differentially expressed between the triple del...
متن کاملFis, an accessorial factor for transcriptional activation of the mar (multiple antibiotic resistance) promoter of Escherichia coli in the presence of the activator MarA, SoxS, or Rob.
Transcription of the multiple antibiotic resistance marRAB operon increases when one of the sequence-related activators, MarA, SoxS, or Rob, binds to the "marbox" centered at -61.5 relative to the transcriptional start site. Previous deletion analyses showed that an adjacent upstream "accessory region" was needed to augment the marbox-dependent activation. To analyze the roles of the marbox and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 159 شماره
صفحات -
تاریخ انتشار 2013